Iron, Oxidative Stress and Gestational Diabetes
نویسندگان
چکیده
Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans) can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium) for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤ 60 mg daily) on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤ 60 mg daily) for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.
منابع مشابه
Iron and oxidative stress in pregnancy.
Pregnancy, mostly because of the mitochondria-rich placenta, is a condition that favors oxidative stress. Transitional metals, especially iron, which is particularly abundant in the placenta, are important in the production of free radicals. Protective mechanisms against free radical generation and damage increase throughout pregnancy and protect the fetus, which, however, is subjected to a deg...
متن کاملIron status in women with and without gestational diabetes mellitus.
OBJECTIVE Gestational diabetes mellitus (GDM) affects approximately 7% of all pregnancies. Pregnancy, mostly because of the mitochondria-rich placenta, is a condition that favors oxidative stress. A transitional metal, especially iron, which is particularly abundant in the placenta, is important in the production of free radicals. Also, studies have shown that free radicals have a role in GDM. ...
متن کاملاثر محافظتی نانوسریا در جلوگیری از آسیب میتوکندریایی در جنین موش های سوری دیابتی شده با استرپتوزوتوسین
Background and purpose: Gestational diabetes is known as increasing blood glucose level for the first time during pregnancy. Mitochondrial damage and oxidative stress are the most important factors in the development of diabetic complications. Cerium nanoparticles have antioxidant properties. In this study we examined the protective effect of nanoceria in preventing mitochondrial damage induced...
متن کاملEmbryo-Protective Effects Of Cerium Oxide Nanoparticles Against Gestational Diabetes in Mice
Context: Gestational diabetes is defined as carbohydrate intolerance with onset or first recognition during pregnancy. Diabetes during pregnancy increases the incidences of congenital anomalies, in a mother and her embryo. Oxidative stress has been implicated to be responsible in diabetic embryopathy. Objective: In this study, we used nanoceria as an antioxidant for amelioration of diabetic embry...
متن کاملEmbryo-Protective Effects Of Cerium Oxide Nanoparticles Against Gestational Diabetes in Mice
Context: Gestational diabetes is defined as carbohydrate intolerance with onset or first recognition during pregnancy. Diabetes during pregnancy increases the incidences of congenital anomalies, in a mother and her embryo. Oxidative stress has been implicated to be responsible in diabetic embryopathy. Objective: In this study, we used nanoceria as an antioxidant for amelioration of diabetic embry...
متن کامل